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Abstract

Rotation of small rigid objects in a deforming ductile matrix can produce two different types of microstructure: a shape fabric due to

alignment of the principal axes of a population of elongate objects and the inclusion trail microstructure preserved in syntectonic

porphyroblasts. We use numerical modeling to show that inclusion trails of elongate porphyroblasts are expected to be extremely complex. In

contrast, snowball garnets are readily interpretable. But misuse of reference frame and kinematic misconceptions have obfuscated the

discussion on the formation of porphyroblast inclusion trails in general and snowball garnet inclusion trails in particular. We clarify this

point. Models for snowball garnet formation that are based on the notion of garnets being irrotational with respect to the earth can be rejected

on a geometrical and kinematic basis. Further, the notion that rigid objects embedded in a deforming ductile matrix generally do not rotate is

unsound—it violates the fundamental physical law of balance of angular momentum.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Inclusion trails in porphyroblasts are common in

metamorphic rocks. Although geologists have devoted a

lot of effort to interpreting them, considerable controversy

still exists even for simple inclusion trail patterns such as

snowball garnets. We believe that there are two reasons for

this. First, the problem is inherently complex and, as we

show in this paper, except for near-spherical porphyroblasts,

the three-dimensional (3D) geometry of inclusion trails is

expected to be extremely complex. Second, misuse of

reference frames, kinematic misconceptions, and violation

of mechanical principles in some studies have added further

confusion.

Many garnet porphyroblasts are approximately spherical,

rendering their inclusion trails relatively interpretable.

However, even for spherical garnets, unambiguous

interpretation is commonly difficult. For example, simple

sigmoidal inclusion trails with curvature less than 908 may
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be due to syntectonic rotation of the garnet relative to the

foliation or due to post- or inter-tectonic helicitic growth

over a crenulated foliation. It is not always possible to

distinguish the different origins (e.g. Schoneveld, 1979).

Slight differences in inclusion trail morphology may allow

recognition of helicitic garnets (Schoneveld, 1979) and

correlatable variation in the inclusion trajectory with

hosting folds (e.g. Fyson, 1980) is good evidence of

syntectonic relative rotation during folding (Jiang, 2001).

The least ambiguous inclusion trails in garnets are, in our

opinion, those of snowball garnets (with inclusion trails that

curve much more than 908 from the center to the rim, e.g.

Spry, 1963, 1969, p. 253; Schoneveld, 1979; Williams and

Jiang, 1999) for they must be syntectonic, and following

Schmidt (1918), Spry (1963, 1969), Schoneveld (1979) and

many others, they have a simple explanation—recording the

relative rotation between the garnet and the foliation in a

non-coaxial progressive deformation history. However, Bell

and co-workers have disputed this interpretation (e.g. Bell

and Johnson, 1989; Bell et al., 1992a). They have proposed

alternative models based on the notion that the garnets do

not rotate with respect to the earth. Numerous papers have

been published on the topic since Bell and Johnson (1989).
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Johnson (1993b) suggests that both the Schmidt–Schone-

veld model and the models of Bell and co-workers may

explain observations equally well (Johnson, 1993b, 1999),

which, if true, would imply that the whole dispute is

metaphysical. We do not repeat arguments already pre-

sented in the literature; interested readers may refer to the

original papers (such as Bell and Johnson, 1989; Bell et al.,

1992a,b; Passchier et al., 1992; Johnson, 1993a,b, 1999;

Williams and Jiang, 1999) for details. The purposes of the

present paper are instead: (1) to show that the 3D inclusion

trails expected from elongate syntectonic porphyroblasts are

too complex to be interpretable, (2) to clarify some

confusion due to misuse of reference frames and mis-

conceptions regarding kinematics in the literature, (3) to

argue on a geometrical and kinematic basis that neither the

original model of Bell and Johnson (1989) nor its modified

form (Johnson, 1993b) for snowball garnet formation can be

generally applicable, and (4) to demonstrate that the notion

that rigid porphyroblasts in a deforming ductile matrix

generally do not rotate with respect to the earth (or any other

inertial frame) is unsound because it violates the funda-

mental physical law of the balance of angular momentum.
2. Complexity of inclusion trails from syntectonically-

grown, elongate porphyroblasts

Rotation of a rigid object in 3D space has two effects.

First, it reorients the object continuously. The orientation of

an orthorhombic rigid body is defined by the plunge

directions and plunge angles of its three symmetric axes,

a1, a2, and a3 (Fig. 1a). Because the three axes are mutually

perpendicular, three independent variables are sufficient to

completely define the orientation of the object, such as

plunge direction and plunge angle of one axis plus the

plunge direction of a second axis. In the special case of one

axis being horizontal, the three independent variables can be

the azimuth of the horizontal axis plus the plunge direction

and the plunge angle of a second axis. Rotation of the object

leads to variation with time of the plunge directions and

plunge angles of the symmetric axes. This may result in a

preferred orientation fabric (Ježek et al., 1994, 1996) for a

large population of elongate rigid objects.

The second effect of rotation is the rotation of the rigid

object around its own symmetrical axes. The accumulation

of this rotation over time, which we call revolution in this

paper, gives rise to various inclusion trails in syntectonic

porphyroblasts overgrowing a preexisting foliation.

The two effects of rotation are described mathematically

in the following.
Fig. 1. Two effects of rigid object rotation: reorienting and revolution. (a) The or

mutually perpendicular axes, such as the three symmetrical axes for an orthorhom

as trend q and plunge f of a1-axis plus a trend of another axis). (b)–(d) Variation

triaxial ellipsoidal object (aspect ratio of 3:2:1) embedded in a steady simple she

hemisphere equal-area projection. (e) Accumulated revolutions for the axes as th
In the rigid body internal coordinate system defined by

the symmetrical axes of the rigid object (the a1a2a3 system

shown in Fig. 1a), the angular velocity of a rigid object at an

instant is:

u0 Zu0
1a1 Cu0

2a2 Cu0
3a3 (1)

where a1, a2, and a3 are unit vectors parallel to the

respective axes.

Suppose Q is the coordinate transformation matrix from

an external coordinate system X1X2X3 (Fig. 1a) to the rigid

body internal system. Q then relates the coordinates of a

position vector in the external system (x1, x2, x3) to its

coordinates (x01, x02, x03) in the rigid body internal system by:
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The instantaneous rotation of the rigid body in the

external coordinate system is described by its angular

velocity stated in the X1X2X3 system:

uZQTu0 (3)

where QT is the transposed matrix of Q.

The first effect of rotation—reorienting of the three axes

of the object—is described by the following equation:

dai
dt

Zu!ai ðiZ 1; 2; 3Þ (4)

The second effect of rotation, revolution of the rigid

body, is described by the accumulated rotation (U)—the

time integral of the angular velocity around each axis:

Ui Z

ðt
0
u0
idt ðiZ 1; 2; 3Þ (5)

Eq. (4) can be solved numerically, if the instantaneous

angular velocity is computed from the theory of Jeffery

(1922). A MathCad (Mathsoft Engineering and Education,

Inc., http://www.mathsoft.com) program, CLASTRGD, is

developed for numerical modeling of rigid clast rotation in

ductile flows based on Jeffery’s (1922) theory. The

algorithm and program will be published separately. Fig.

1b–d presents rotation trajectories, up to a bulk shear strain

of 25, of a triaxial ellipsoid (aspect ratio a1:a2:a3Z3:2:1) in

a simple shear flow using CLASTRGD. The shear plane is

north–south and vertical, the shear direction is horizontal,

and the sense of shear is sinistral. The initial orientation of

the ellipsoid is as follows: a1-axis plunges 608, 0908, a2-axis

plunges 08, 1808, and a3-axis plunges 308, 2708. Fig. 1e

presents the revolutions of the ellipsoid around its three
ientation of a rigid object is defined by the trends and plunges of any three

bic object shown here. Only three independent parameters are needed (such

with time of the orientations of the long, intermediate, and short axes of a

ar flow. Dashed arrow indicates upper hemisphere and solid arrows lower

e simple shear strain increase to 25. See text for details.

http://www.mathsoft.com
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Fig. 2. Rotation and inclusion trail development in porphyroblasts of different initial shapes and orientations. (a) The flow described in a coordinate system xyz.

The kinematic vorticity number is 0.5. Three rigid porphyroblasts A, B, and C are shown. C is spherical. A and B are spheroids with the same aspect ratio of

2:1:1. The initial plunge of A is 808, 0908, and that of B is 808, 2708. (b) The paths of the long axes for A and B (lower hemisphere equal-area projection). Both

porphyroblasts reach the stable orientation making a synthetic angle of w138 with the shear plane. (c) The accumulated spin around the symmetrical axes of the

three porphyroclasts as the deformation advances. The horizontal axis is time multiplied by the shear strain rate. (d) The final senses of the spiral trails of

porphyroblasts A and B are opposite and their long axes lie in the plane perpendicular to the vorticity and are w138 synthetic to the y-axis (b). Porphyroblast C

has inclusion trail sense the same as the vorticity and the trail axis is parallel to the vorticity. See text for more details.
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respective axes calculated from numerical solution of

Eq. (5).

One can appreciate the expected complexity of 3D

inclusion trails in such an elongate porphyroblast even

though the flow is simply a steady simple shear. For a

spherical object, the rotation axis is always parallel to the

vorticity vector of the surrounding fluid and, in a steady flow

case, continues to be attached to the same material line of
the object throughout. In distinction, the instantaneous

angular velocity of a triaxial object u is in general not

parallel to any of its symmetrical axes and it varies with

time (Jeffery, 1922). Thus, the revolution history of a non-

spherical object depends on its initial orientation in the flow,

its shape, and the flow kinematics. A small difference in

initial orientation and/or shape can result in drastically

different final inclusion trail geometries. Fig. 2 shows results
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of another numerical example using CLASTRGD to

illustrate this point. Consider a plane-strain deformation

(Ramberg, 1975) with a kinematic vorticity number of 0.5

and with three porphyroblasts (A, B, and C) embedded in

the flow. Porphyroblasts A and B are spheroidal with the

same aspect ratio (2:1:1) but have slightly different initial

orientations with A initially plunging 808, east, and B

initially plunging 808, west. Porphyroblast C is spherical.

For simplicity let us assume that the aspect ratios of the

porphyroblasts do not change during growth. Fig. 2b shows

the orientation trajectories of the long axes of A and B. Both

porphyroblasts rotate to a stable orientation with the long

axes making synthetic angles of 138 with respect to the shear

zone boundary as predicted by the Jeffery theory (Passchier,

1987; Ježek et al., 1996). Both have undergone the same

amount of revolution around their respective long axes

because of their identical shape and symmetrical initial

orientations with respect to the shear zone (Fig. 2c).

However, the spiral axes of the inclusion trails are

perpendicular, rather than parallel, to the flow vorticity,

and the spirals have opposite senses of curvature on the

section perpendicular to their long axes (Fig. 2d). Clearly

the 3D inclusion trails of A and B do not have monoclinic

symmetry. Ghosh et al. (2003) make similar observations

for elongate clasts initially lying on the shear plane of the

bulk flow. Porphyroblast C, being spherical, has the simplest

inclusion trail with the spiral having the same sense as the

flow vorticity and spiral axis parallel to the vorticity vector

(z-axis, Fig. 2).

The above two numerical experiments serve to demon-

strate that inclusion trails in elongate syntectonic porphyr-

oblasts are extremely complex even for simple deformation

histories (steady progressive simple shear) and simple

porphyroblast shapes (spheroidal). We conclude that it is

not possible to interpret 3D inclusion trails in elongate

porphyroblasts in general. Interpretation of such porphyr-

oblast inclusion trails should be regarded with suspicion and

analyzed critically. However, preferred orientation fabrics

defined by the principal axes of a population of elongate

objects are more tractable.
1 The foliation as a material plane is generally stretched as well during

deformation. But it is the rotation that is relevant here.
3. Reference frame and the controversy regarding the

formation of snowball garnet inclusion trails

The formation of snowball garnets was explained many

years ago (Schmidt, 1918) by the rotation of garnets with

respect to a foliation being overgrown by the garnets.

Schoneveld (1979) designed a simple analogue model (Fig.

3) to demonstrate the process. The model has been

elaborated by a number of authors using numerical

modeling based on fluid dynamics (e.g. Masuda and

Ando, 1988; Masuda and Mochizuki, 1989; Bjornerud and

Zhang, 1994; Gray and Busa, 1994), but the idea remains

the same. It can be summarized as follows in precise terms

of the kinematics of continuum deformation: In a progress-
ive deformation, the foliation behaves essentially like a

material plane that rotates1 toward a stable orientation (the

major principal strain plane for a coaxial progressive

deformation or the shear plane for a non-coaxial progressive

deformation), but the garnet, being a small rigid body,

rotates in response to the flow vorticity, if it is spherical, or

both the flow vorticity and strain rates, if it is non-spherical.

The difference in the angular velocities between the garnet

and foliation as well as the history of garnet growth gives

rise to the final inclusion trail geometry.

It is critical to realize that in the Schmidt–Schoneveld

model it is the relative rotation (difference in angular

velocity) between garnet and foliation that produces the

inclusion trail curvature; whether there is absolute rotation

of the garnet with respect to the earth is irrelevant. Using

Schoneveld’s simple analogue (the brass rings for the

growing garnet and the strings for the foliation), all the

following three statements describe the Schmidt–Schone-

veld model and are equivalent:

Statement 1: The snowball pattern results from progress-

ive rotation of the growing garnet with respect to the

foliation.

Statement 2: The snowball pattern results from progress-

ive rotation of the foliation with respect to the garnet.

Statement 3: The snowball pattern results from relative

rotation between the garnet and the foliation.

The only difference between these statements lies in the

implied reference frames used to describe the phenomenon.

In statement 1, the reference frame is the foliation, in

statement 2 it is the garnet, and in statement 3 an external

reference frame such as the earth is used.

Bell and Johnson (1989) propose a strain partitioning

model (SPM), in which the garnet overgrows multiple-

generations of nearly orthogonal foliations (Fig. 4). This

model differs fundamentally from the Schmidt–Schoneveld

model in that in the latter a single foliation is overgrown by

the garnet. It is this difference between the two models that

gives rise to the distinctive 3D inclusion trail geometries

predicted by the two models (Williams and Jiang, 1999).

Williams and Jiang (1999) conclude that the 3D inclusion

trail geometries can thus be used to discriminate the two

models. They also point out that where the 3D geometry is

documented, all naturally occurring snowball garnets,

reported in the literature, are consistent with the predictions

of the Schmidt–Schoneveld model but not with the SPM.

Because the SPM has in it the general notion that the

garnet does not rotate relative to the earth, it has been

frequently called the ‘non-rotational model’ (e.g. Johnson,



Fig. 3. The analogue model of Schoneveld (1979) demonstrating the formation of snowball garnets by the Schmidt–Schoneveld method. (a) Apparatus

comprising a wooden board with a circular cut-out disc that is covered with plastine and can be rotated in the hole. Strings are stretched across the board and

held taut by weights. Nesting brass rings are pressed into the plastine, concentric with the disc, starting with the smallest ring. After placement of each ring, the

plastine-covered disc is rotated a given amount with respect to the wooden board. The rings pin the strings that they intersect to the disc, so that the segments of

the strings within the rings are rotated with the disc. The strings represent the foliation and the rings represent successive garnet growth. The strings within the

rings represent ‘foliation inclusion trails’ encapsulated within the ‘garnet’. (b)–(e) Images traced from photos of the analogue experiment at different stages

(total amount of rotation shown below each image). The strings in the actual model have straight-line segments between rings, but the lines have been smoothed

in the diagram to represent continuous rather than stepwise growth. It is readily seen from this simple analogue that it makes no difference, for the final

inclusion pattern, whether the wooden board was kept fixed to the earth and the disc was progressively rotated (clockwise here) (an easier experiment), or the

disc was kept fixed and the wooden board was made to rotate progressively (anticlockwise) (a more inconvenient experiment). After Schoneveld (1979).
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1993a,b; Passchier and Trouw, 1996; Williams and Jiang,

1999). This should not be confused with the statement 2

representation of the Schmidt–Schoneveld model; stating

the Schmidt–Schoneveld model in the garnet reference

frame (statement 2) does not make it the SPM.

Williams and Jiang (1999) did not propose that rotating a

foliation around an irrotational (to earth) garnet would

produce 3D inclusion geometries different from those

produced by rotating the garnet with respect to the foliation

(cf. Johnson, 1999; Stallard et al., 2002). We did argue that

the former was an unlikely process for the formation of

natural snowball garnets. Our stated reason for this was not

that it would produce different inclusion trail geometries,
but that the deformation paths associated with it are unlikely

to occur in crustal deformation. We will return to this point

in the next section.

Stallard et al. (2002) set out to use a numerical modeling

approach to show that the ‘non-rotational model’ produces

inclusion trail morphology very similar to the Schmidt–

Schoneveld model, and conclude that 3D inclusion trail

geometry cannot be used to distinguish between different

models. However, the ‘non-rotational model’ modeled by

them is not the SPM. Rather, it is simply the Schmidt–

Schoneveld model stated in the garnet reference frame.

Thus, their modeling has demonstrated the trivial point that

statements 1 and 2 are equivalent. Stallard et al. (2002)



Fig. 4. The strain-partitioning model (SPM) of Bell and Johnson (1989) for the formation of snowball garnets, taken from Johnson (1993b). In this model the

inclusion trails represent relicts of multi-generations of nearly orthogonal foliations [five generations (S1–S5) shown here]. The fundamental difference between

this model and the Schmidt–Schoneveld model lies in the fact that in the SPM the garnet overgrows multiple generations of foliations whereas in the Schmidt–

Schoneveld model (Fig. 1) a single foliation is overgrown by the garnet. Stating the Schmidt–Schoneveld model in the garnet reference frame does not make it

the SPM.
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report some minor differences in the inclusion geometry

between their rotational and non-rotational sets of simu-

lations. This can be readily explained by the fact that the two

simulations actually represent dynamically different sys-

tems. In the rotational simulation, the rigid inclusion is

subjected to the torque exerted by the surrounding fluid and

it rotates in response to the vorticity to eliminate the torque.

In their non-rotational simulation, the inclusion is held

irrotational by an unspecified external torque to counteract

the torque exerted by the surrounding fluid. We cannot
imagine any source of such external torques in natural

deformation.
4. The kinematic consequence of forming snowball

garnets with the garnets irrotational with respect to the
earth

Sharp curvature and truncation of inclusion trails are

common in snowball garnets and they are explained in the



Fig. 5. Model presented by Johnson (1993b, fig. 9) and Johnson (1999) as a

modification of the original SPM to explain the formation of continuous

spirals in snowball garnet without garnet rotation (relative to earth).

Supposedly, the modification is simply that successive foliations change

smoothly and continuously from one to the other. However, the foliation

being overgrown means it is no longer a crenulation cleavage comprising

microlithons and septa, but is a penetrative foliation. Whether it is a single

foliation or, as Johnson (1993b) suggests, smoothly and continuously

connected successive segments of multi-generations of foliations that the

garnet overgrows is irrelevant since as described, and shown, the successive

foliations do not show overprinting. There is simply a gradual transition

from one foliation to the other with a constant anticlockwise relationship

between the new and the old. This situation is indistinguishable from a

single foliation being wrapped around a garnet. It is therefore identical to

the Schmidt–Schoneveld model, stated in the garnet reference frame

(statement 2). See text for details. After Johnson (1993b).
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Schmidt–Schoneveld model by periods of fast rate of

rotation relative to rate of growth. The discontinuities are

inherent in the SPM representing overprinting of successive

nearly-orthogonal foliations. Natural snowball garnet trails,

however, can be continuous, which is not compatible with

the SPM. Johnson (1993a,b) presents some of the best

examples of such continuous inclusion trails. He, following

Bell et al. (1992a), provides an explanation (Johnson,

1993b, fig. 9) of how such continuous trails can form
without garnet rotation relative to the earth (Fig. 5). He

wrote: smoothly-curving snowball trails “may also imply

that strain in the matrix surrounding a porphyroblast is

relatively homogeneously distributed during successively

overprinting deformation” (Johnson, 1993b, p. 640). He re-

emphasized (Johnson, 1999, p. 1717) the idea of more

distributed strain near the porphyroblast margins and

claimed that the idea was already in the model of Bell and

Johnson (1989): “The original non-rotational model pre-

sented by Bell and Johnson (1989) requires the developing

foliation/crenulation cleavage to begin wrapping around the

porphyroblast at an early stage of its growth, owing to

heterogeneous shortening, rather than remaining planar

throughout the entire growth phase as assumed by Williams

and Jiang (1999)”. The remarkable continuity of the

foliation traces in Fig. 5 clearly suggests that a single

foliation was overgrown by the garnet. If the trail in Fig. 5

does represent multiple generations of foliations, as Johnson

claimed in the original figure caption (Johnson, 1993b, fig.

9) and in his recent review of the present paper, then

successive foliations must be consistently anticlockwise to

one another and the angle between them must be so small

that they join so remarkably smoothly that they resemble a

single foliation. Either way, a completely different defor-

mation path from the original SPM is required as explained

below.

Let us now look beyond a single garnet to see the

kinematic consequence of forming snowball inclusion trails

by the foliation (whether a single foliation, or successive

segments of multi-generations of foliations joined

smoothly) rotating and wrapping around an irrotational (to

earth) garnet. As Fig. 6 shows, an observer on any garnet

(say, garnet A) would find that the surrounding matrix

material and garnets (B–G) are moving in circular paths. To

produce a 3608 inclusion curvature, the garnets must

complete a circular revolution. If deformation paths such

as this occur in nature, they will produce snowball garnets

that are indistinguishable from snowball garnets from shear

zones. But what environments can produce the required

circular paths? One possibility is a special vortex (Truesdell,

1977, p. 99; Triton, 1988, p. 82–84) in which the particles

move in circular paths around the vortex axis with the

angular velocity (u) inversely proportional to the square of

the particle distance (r) from the vortex axis, i.e. uZK=r2,

where K is a constant (Fig. 7i). In such a vortex, a straight

segment of a material line (initial trajectory of a ‘foliation’

in Fig. 7i), is changed to a spiral-shaped curve as flow

advances. Initial small rigid inclusions (‘garnets’ a, b, c, .,

g) move along circular paths to their new positions (A, B, C,

., G), but the orientation of each ‘garnet’ is unchanged

because this is an irrotational (yet non-coaxial) flow (Lister

and Williams, 1983; Triton, 1988, p. 82–84). Snowball trails

are produced because of relative rotation of the ‘foliation’

with respect to the irrotational ‘garnets’ (Fig. 7ii). Another

possible environment we can imagine is in convection cells

where the material transport and velocity gradient



Fig. 6. Kinematic consequence of forming snowball garnets by rotating and wrapping the foliation around an irrotational-to-earth garnet. Parts (a)–(c) show

different stages of this process. The particles around any garnet, say garnet A, must follow circular paths. Only in special vortex or fine-tuned convection cells is

this type of deformation path possible. (d) Natural snowball garnets from Rosenfeld (1968). The foliation is represented as continuous lines here. In general, it

is stretched as well as rotated during deformation. The garnet sketch is after Johnson (1993b, fig. 9). See text for details.
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fortuitously (not a necessary characteristic of any con-

vective flow) generate an irrotational (to earth) flow. Neither

environment is likely for metamorphic terranes where

snowball garnets are developed. As stated above, Williams

and Jiang (1999) rejected the proposal of forming snowball

inclusion trails by rotating and wrapping the foliation

around an irrotational (to earth) garnet based on the

unlikelihood of the required deformation paths.
5. Balance of angular momentum and porphyroblast

rotation

The preceding sections are based on geometrical and

kinematic arguments. We show in this section that the

notion of irrotational rigid porphyroblasts in a deforming

ductile matrix is unsound because it violates the funda-

mental physical law of balance of angular momentum.



Fig. 7. Flow in a special vortex where the particles move on a circular path (an approximation of a real vortex in which particles have a slow radial velocity

toward the vortex axis) and the angular velocity is inversely proportional to the square of the particle distance from the vortex axis. (i) Particle paths, distortion

of a segment of material line representing foliation trace, and the initial and final positions of a few small rigid inclusions (a, b, c, ., g and A, B, C, ., G).

Inclusion a (covered by A) has completed two revolutions. Although the ‘garnets’ move in circular paths, they do not change their own orientations because the

flow is an irrotational (yet non-coaxial) one. (ii) Garnet inclusion trails expected of the ‘garnets’ as a result of relative rotation between the ‘foliation’ and

‘garnets’. See text for more details.
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For a rigid object, the law of balance of angular momentum

(cf. MacMillan, 1936, p. 94) is stated mathematically as:

tZ I
du

dt
(6)

wheret (a vector) is the total torque acting on the rigid object, I

(a symmetrical rank 2 tensor) is the moment of inertia of the

rigid object, and u (a vector), as in Fig. 1, is the angular

velocity of the rigid object.

Eq. (6) is universal—it must be obeyed by motion of any

rigid object. In the case of a spherical rigid object of uniform

density, all three quantities in Eq. (6) are reduced to scalars

and the moment of inertia is (cf. MacMillan, 1936, p. 40):

I Z
8

15
pR5r (7)

where R is the radius of the object and r is its density. Let us

now consider balance of angular momentum for a few

possible situations.
Fig. 8. The situation of garnet in complete contact with the matrix. (a) The

garnet rotates at an angular velocity equal to half the vorticity. (b) The

velocity (VG) of an arbitrary point P on the surface of the garnet tangential

to the surface. (c) The velocity (VS) arising from the simple shear

component of the flow at point P in the matrix. VM is the tangential

component of VS. (d) Torque distribution on the surface of the garnet. Only

a 2D section through the center of garnet is shown here which is sufficient

for the analysis. See text for details.
5.1. Situation 1: garnet in complete contact with the matrix

Where the garnet is in complete contact with the matrix

(Fig. 8a), the total torque exerted on it by the deforming

ductile matrix can be calculated using eq. (36) of Jeffery

(1922):
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tZ
16pm w

2
Ku

� �
3a

(8)

where m is the matrix viscosity, w is the magnitude of the

matrix vorticity, and a is defined by the following integral

(Jeffery, 1922, p. 164):

aZ

ðN
0

dl

ðR2 ClÞ5=2
Z

2

3R3
(9)

Inserting Eq. (9) into Eq. (8), one obtains:

tZ 8pmR3 w

2
Ku

� �
(10)

In a slow motion, the balance of angular momentum

requires that the torque vanish (tZ0) at all times, which

leads to the well-known relationship:

uZ
w

2
Z

_g

2
(11)

where _g is the simple shear strain rate parallel to the shear

plane.

One can better understand this result by considering the

traction distribution on the garnet surface (Fig. 8a). It is

sufficient to consider the traction arising from the simple

shear component only, because the pure shear component

does not lead to a net torque. The tangential velocity of an

arbitrary particle P (Fig. 8b) on the garnet surface is:

VG ZuR (12)

At point P, the matrix particle velocity resulting from the

simple shear component of the flow in the same direction as

VG, if the garnet were not present, is (Fig. 8c):

VM Z _gRsin2b (13)

In the sector VMOVG the matrix exerts a positive torque

on the garnet and in the sector VM!VG, the matrix exerts a

negative torque. Varying b from 0 to 3608, i.e. taking the

integral of
Ð 2p

0 ðVGKVMÞdb and setting it to zero, one finds

that Eq. (11) is the only solution for the total torque to

vanish (Fig. 8a).

Suppose now a porphyroblast was not rotating initially.

Is it possible for it to remain irrotational? The answer is no,

because of the requirement of the balance of angular

momentum as explained below.

Inserting Eqs. (7) and (10) into Eq. (6), and after

simplifying, the expression for the balance of angular

momentum for a spherical object becomes:

du

dt
Z

15m

R2r

w

2
Ku

� �
(14)

Solving Eq. (14) with the initial irrotational condition of

u tZ0Z0j , we have:

uZ
w

2
1Kexp K

15m

R2r
t

� �� �
(15)

A simple calculation using Eq. (15) with, say, a set of
parameters of the following: mZ1019 Pa s, RZ0.01 m, and

rZ3300 kg/m3 shows that it takes less than 10K19 s for u to

approach w/2! That is, the rigid object, irrotational initially,

is driven to rotate at an angular velocity required by the

matrix vorticity almost instantaneously.

5.2. Situation 2: garnet partially insulated from the matrix

by a low-viscosity material

In some cases the garnet may be separated from the

deforming matrix by a low-viscosity material, leading to

what has been variably called ‘decoupling’, ‘incoherent

contact’, or ‘interface slip’ between the garnet and the

matrix (e.g. Mancktelow et al., 2002). Jeffery’s theory

cannot be directly applied to this situation, but the angular

momentum law still holds and the total torque acting on a

garnet must vanish.

The presence of a low-viscosity material between the

garnet and the matrix alters the traction distribution. The

effect will differ with the location of the low-viscosity

material. If it is in the sector of positive torque (top and

bottom, Fig. 8d), the reduction in positive torque will cause

the garnet angular velocity to decrease (du=dt!0) until the

torque balance is reestablished and the garnet rotates at

u!w=2. If the low viscosity material is located in the

negative torque sector (Fig.8d), the garnet angular velocity

will increase (du=dtO0) until the torque balance is

reestablished. Fig. 9a shows a case where the low viscosity

material is distributed evenly over the positive and negative

torque sectors (Fig. 9b). The angular velocity will remain

unchanged for this case.

If the garnet is completely isolated by a low viscosity

mantle from the average matrix, then the vorticity in the

matrix cannot be directly related to the angular velocity of

the garnet. However, unless the low-viscosity mantle

material is inviscid, it will transmit angular momentum

from the matrix to the garnet, which drives the garnet to

rotate. In porphyroclast systems (Passchier and Simpson,

1986), fine-grained dynamically recrystallized material

derived from the shrinking porphyroclast may constitute a

low-viscosity shell separating the clast from the matrix.

Since garnet porphyroblasts grow, rather than shrink, and

since the low-viscosity mantle is being deformed continu-

ally (Fig. 10), we do not think it likely that garnet

porphyroblasts can be completely surrounded by a low-

viscosity shell for geologically significant times.

5.3. Situation 3: garnet in point contact with the matrix (the

ball-bearing case)

If the garnet is surrounded by a low-viscosity material

but maintains in point contact with the matrix, the situation

resembles the ball-bearing case (Fig. 9c and d). To balance

the angular momentum, there must be no frictional force

between the garnet and the matrix at the contact. This

requires the garnet angular velocity to satisfy (Fig. 9e):



Fig. 9. The situations of garnet partially separated from the average matrix by a low viscosity material. (a) The presence of a pressure shadow (low viscosity

material) may not change the torque balance because the shadow sectors evenly cover part of the sector of positive traction and part of sector of negative

traction (b). (c) Ideal ball-bearing mechanism where the angular velocity of the ball is equal to the tangential velocity divided by the radius of the ball. (d) Ball-

bearing-like mechanism may operate in nature at least transiently. If the location of the contact point between the matrix and the porphyroblast is determined by

the orientation of the principal strain rates (_31,_33) the angular velocity of the porphyroblast can be related to the bulk vorticity number. (e) The garnet must

rotate at an angular velocity equal to the tangential velocity at the contact point (Vt) divided by its radius. See text for details.

Fig. 10. Various situations that may occur at different stages of a snowball garnet formation. (a) and (b) Garnet completely insulated from the matrix by a low

viscosity material. The garnet angular velocity cannot be simply related to the matrix vorticity. (c) Point contact between the matrix and the garnet (ball-

bearing-like mechanism). (d) and (e) Garnet in partial to complete contact with the matrix. See text for discussion.
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RuZ _gRcos2x (16)

which leads to:

uZ _gcos2x (17)

where x is the angle between the contact point orientation

and the shear plane normal (Fig. 9d). For perfect spherical

garnets, x can be related to the kinematic vorticity number,

Wk, of the flow by (e.g. Jiang, 1994b):

xZ
1

2
sinK1Wk (18)

In a non-coaxial progressive deformation environment,

syntectonically growing garnets may experience various

situations at different stages of their development. Fig. 9

schematically illustrates this scenario.
6. Discussion

The various situations considered in the last section are

based on the assumption of perfect spherical rigid garnets.

Rotation of elongate and/or deformable objects in ductile

flow is far more complicated. And the presence of low-

viscosity material in the interface between the object and the

matrix may affect the rotational behavior far more

significantly (Mancktelow et al., 2002).

Strain localization is another issue affecting the

rotational behavior of porphyroblasts. ten Grotenhuis et al.

(2002) use a Mohr–Coulomb material (tapioca pearls) to

investigate the influence of strain localization on the

rotational behavior of mica-fish shaped rigid objects. They

suggest that localized deformation may be common in the

development of mylonites. From a kinematic point of view,

the effect of localization is a highly heterogeneous

distribution of the vorticity flux (Jiang, 1994a). If shear is

highly localized into C-surfaces in a shear zone, then the C-

surfaces take most of the vorticity flux leaving the domains

between C-surfaces with far less vorticity. This may explain

the stable orientation of elongate porphyroclasts such as

micas. However, snowball garnets do not just grow in the

domain between the C-foliations; they overgrow them.

Localization on the scale smaller than the garnet porphyr-

oblasts should not alter their rotational behavior.

The motion of porphyroblasts, irrespective of their

shapes and the deformation conditions that they are

subjected to, must all obey the law of balance of angular

momentum. While it is certainly possible that in special

cases a porphyroblast may have zero angular velocity, the

notion that rigid objects embedded in a deforming ductile

matrix are in general irrotational with respect to the earth

violates the law of balance of angular momentum and

should be abandoned.
7. Conclusions

The 3D inclusion trails of non-spherical syntectonic

porphyroblasts are expected to be extremely complex. They

do not generally have monoclinic symmetry even for the

simplest deformation path. Each porphyroblast is a unique

initial value problem depending on its initial orientation and

shape. It is in general not possible to interpret such inclusion

trails. However, shape preferred orientations defined by

alignment of elongate porphyroblasts are interpretable.

The physics of a system does not change simply because

one changes the reference frame used to describe it. Stating

the Schmidt–Schoneveld model in the garnet reference

frame does not make it the SPM.

The original SPM (not to be confused with statement 2

representation of the Schmidt–Schoneveld model) is not

supported by evidence, because the 3D inclusion trail

geometry that it predicts is not observed in naturally

occurring snowball garnets reported so far. The modified

form of it requires special deformation paths that are

unlikely to occur in crustal deformation.

While the relationship between the rotation of rigid

porphyroblasts and the matrix flow varies with the interface

property, the notion that rigid inclusions in a deforming

ductile matrix do not in general rotate violates the physical

law of the balance of angular momentum and should be

abandoned.
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